

FIG. 1 Example Spectral Density Function

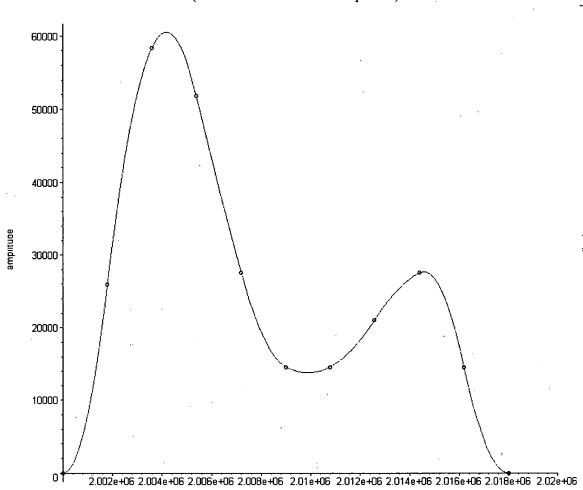
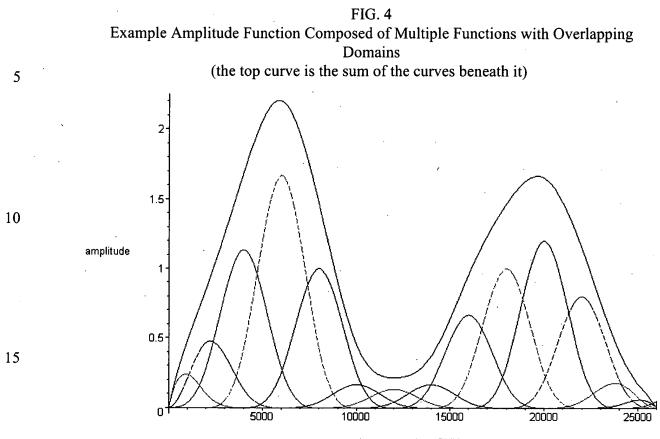



FIG. 3 Example Amplitude Function Made from 10 Piecewise Continuous Functions (hollow dots are the knot points)

frequency

frequency minus 2MHz

•

20

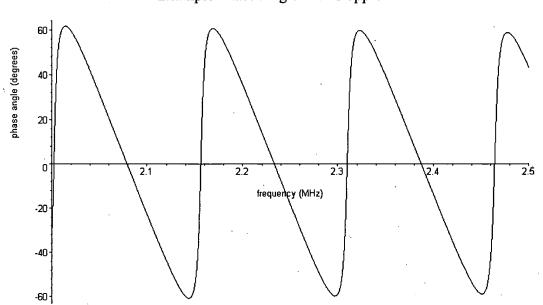
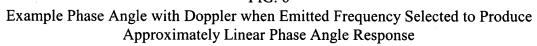



Figure 5 Example Phase Angle with Doppler

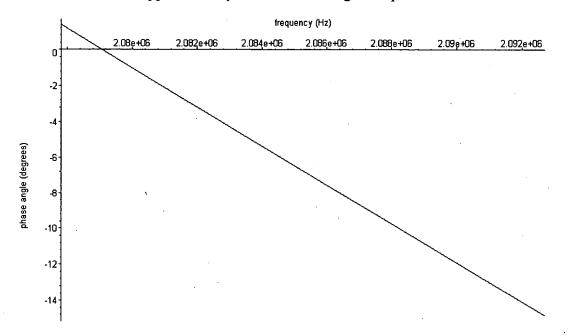


FIG. 6

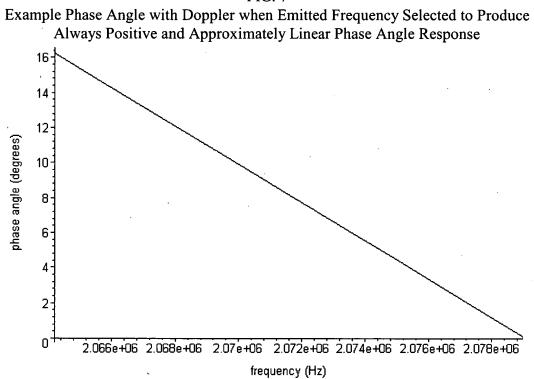


FIG. 7

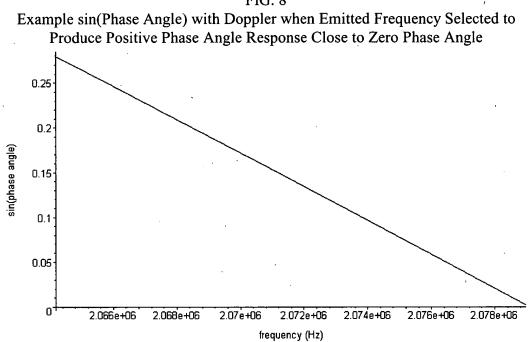
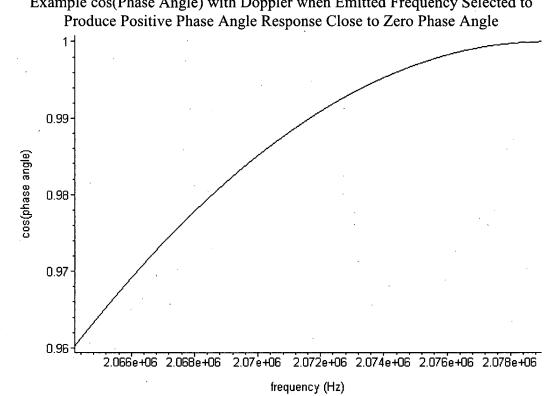
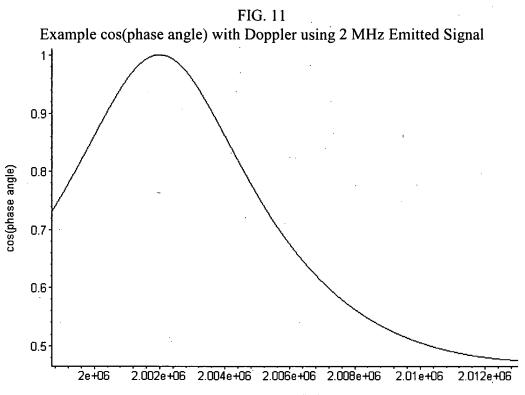



FIG. 8



Example cos(Phase Angle) with Doppler when Emitted Frequency Selected to

FIG. 9

60phase angle (degrees) 40 -20 0 2e+06 2.002e+06 2.004e+06 2.006e+06 2.008e+06 2.01e+06 2.012e+06 frequency (Hz) -20 -40

FIG. 10 Example Phase Angle with Doppler using 2 MHz Emitted Signal

frequency (Hz)

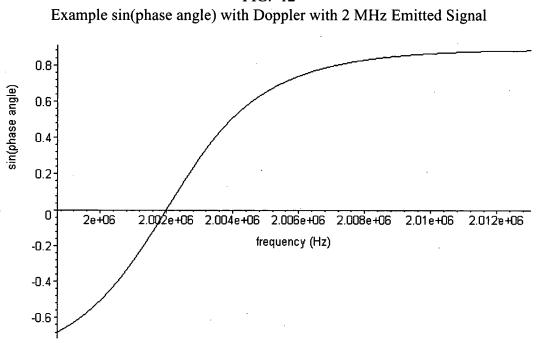


FIG. 12

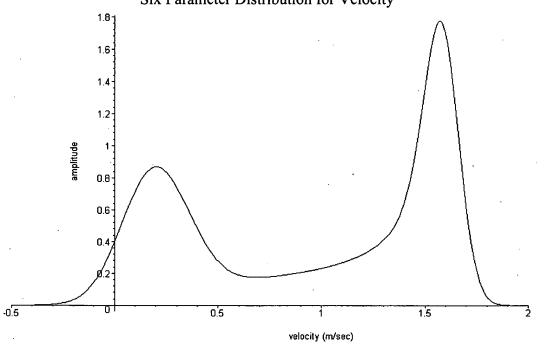


FIG. 13 Six Parameter Distribution for Velocity

Quadratic Function Segment Expression for f(t) without Continuity

 $1 - \cos(2 \pi t H_i) + \cos(2 \pi t L_i)$ ×` $\frac{1}{2}(-\cos(2 \pi t H_j) + \cos(2 \pi t L_j)) c_j$ $\frac{1}{2} \frac{\sin(2 \pi t H_j) - \sin(2 \pi t L_j)}{2} + \frac{1}{2} (-\cos(2 \pi t L_j) L_j + \cos(2 \pi t H_j) H_j)$ н Ч н Г $\pi^2 t^2$ a, $-\frac{1}{2}\frac{\sin(2 \pi t L_j) L_j - \sin(2 \pi t H_j) H_j}{2}$ $\frac{1}{2}(\sin(2 \pi t H_j) - \sin(2 \pi t L_j)) z_j \\ \pi t \\ \pi t \\ \pi t \\ \pi t$ $1 - \sin(2 \pi t H_j) + \sin(2 \pi t L_j) \Big)$ $\frac{1}{2} \frac{-\sin(2 \pi t L_j) L_j + \sin(2 \pi t H_j) H_j}{2} \pm \frac{1}{4} (\cos(2 \pi t H_j) - \cos(2 \pi t L_j))$ $\pi^2 t^2$ $\pi^3 t^3$ $\pi^2 t^2$ $\pi^2 t^2$ $\frac{1}{2} \frac{-\sin(2 \pi t L_j)}{2} L_j^2 + \sin(2 \pi t H_j) H_j^2$ + $\left(\frac{1}{2}\frac{\cos(2 \pi t L_j) L_j - \cos(2 \pi t H_j) H_j}{2}\right)$ π t д t ≥[]. . + f(t) =

FIG. 14

FIG. 15 Parameters for Example

Number of function segments: $N = 7$ Lowest frequency in basis: $H_0 = 0.1996961309$	M = 20 10 ⁷ Starting
	time: $t_0 = 0.00006843506494$
Frequency increment: $H_{\delta} = 2207.908286$	Ending time: $t_M = 0.00007493194556$

Figure 16 Example ||A|| Matrix

				Shampie						
0.8203 10 ¹⁰	0.6331 10 ¹⁰	0.3611 10 ¹⁰	0.1218 10 ¹⁰	0.5626 10 ⁸	-0.4482 10 ¹⁰	-0.5209 10 ¹⁰	-0.4925 10 ¹⁰	-0,3361 10 ¹⁰	-0.1319 10 ¹⁰	
0.1346 10 ¹⁰	0.3307 10 ¹⁰	0.4440 10 ¹⁰	0.3724 10 ¹⁰	0.1696 10 ¹⁰	0.1309 10 ¹¹	0.1109 10 ¹¹	0.7411 10 ¹⁰	0.3434 10 ¹⁰	0.7954 10 ⁹	
-0.1704 10 ¹¹	-0.1562 10 ¹¹	-0.1164 10 ¹¹	-0.6280 10 ¹⁰	-0.1893 10 ¹⁰	-0.5179 10 ¹⁰	-0.1706 10 ¹⁰	0.1658 10 ¹⁰	0.2869 10 ¹⁰	0.1717 10 ¹⁰	
0.1481 10 ¹¹	0.9966 10 ¹⁰	0.3906 10 ¹⁰	-0.2836 10 ⁹	-0.1120 10 ¹⁰	-0.1785 10 ¹¹	-0.1792 10 ¹¹	-0.1488 10 ¹¹	-0.9045 10 ¹⁰	-0.3161 10 ¹⁰	
0.1343 10 ¹¹	0.1588 10 ¹¹	0.1535 10 ¹¹	0.1065 10 ¹¹	0.4226 10 ¹⁰	0.2574 10 ¹¹	0.2027 10 ¹¹	0.1179 10 ¹¹	0.4082 10 ¹⁰	0.2339 10 ⁹	
-0.3484 10 ¹¹	-0.3000 10 ¹¹	-0.2036 10 ¹¹	-0.9561 10 ¹⁰	-0.2240 10 ¹⁰	0.2920 10 ¹⁰	0.8181 10 ¹⁰	0.1159 10 ¹¹	0.9996 10 ¹⁰	0.4623 10 ¹⁰	
0.1249 10 ¹¹	0.4762 10 ¹⁰	-0. 3243 10 ¹⁰	-0.6434 10 ¹⁰	-0.3971 10 ¹⁰	-0.3852 10 ¹¹	-0.3579 10 ¹¹	-0.2708 10 ¹¹	-0.1479 10 ¹¹	-0.4493 10 ¹⁰	
0.3418 10 ¹¹	0.3478 10 ¹¹	0.2935 10 ¹¹	0.1809 10 ¹¹	0.6373 10 ¹⁰	0.2942 10 ¹¹	0.2041 10 ¹¹	0.8411 10 ¹⁰	-0.2369 10 ⁹	-0.2168 10 ¹⁰	
-0.4323 10 ¹¹	-0.3471 10 ¹¹	-0.2061 10 ¹¹	-0.7312 10 ¹⁰	-0.4937 10 ⁹	0.2158 10 ¹¹	0.2593 10 ¹¹	0.2562 10 ¹¹	0.1809 10 ¹¹	0.7252 10 ¹⁰	
-0.3285 10 ¹⁰	-0.1078 10 ¹¹	-0.1618 10 ¹¹	-0.1437 10 ¹¹	-0.6751 10 ¹⁰	-0.4967 10 ¹¹	-0.4344 10 ¹¹	-0.2996 10 ¹¹	-0.1425 10 ¹¹	-0.3377 10 ¹⁰	
0.4665 10 ¹¹	0.4393 10 ¹¹	0.3375 10 ¹¹	0.1866 10 ¹¹	0.5713 10 ¹⁰	0.1602 10 ¹¹	0.6875 10 ¹⁰	-0.3284 10 10	-0.7717 10 ¹⁰	-0.4921 10 ¹⁰	
-0.3126 10 ¹¹	-0.2234 10 ¹¹	-0.9637 10 ¹⁰	-0.9902 10 ⁸	0.2245 10 ¹⁰	0.3510 10 ¹¹	0.3615 10 ¹¹	0.3102 10 ¹¹	0.1938 10 ¹¹	0.6886 10 ¹⁰	
-0.1860 10 ¹¹	-0.2265 10 ¹¹	-0.2290 10 ¹¹	-0.1645 10 ¹¹	-0.6670 10 ¹⁰	-0.3885 10 ¹¹	-0.3181 10 ¹¹	-0.1926 10 ¹¹	-0.7002 10 ¹⁰	-0.5391 10 ⁹	
0.3792 10 ¹¹	0.3368 10 ¹¹	0.2360 10 ¹¹	0.1138 10 11	0.2727 10 ¹⁰	-0.1891 10 ¹⁰	-0.7552 10 ¹⁰	-0.1208 10 ¹¹	-0.1106 10 ¹¹	-0.5284 10 ¹⁰	
-0.1094 10 ¹¹	-0.5185 10 ¹⁰	0.1692 10 ¹⁰	0.4949 10 ¹⁰	0.3267 10 ¹⁰	0.3027 10 ¹¹	0.2888 10 ¹¹	0.2253 10 ¹¹	0.1261 10 ¹¹	0.3892 10 ¹⁰	
-0.1932 10 ¹¹	-0.2012 10 ¹¹	-0.1755 10 ¹¹	-0.1112 10 ¹¹	-0.3987 10 ¹⁰	-0.1775 10 ¹¹	-0.1306 10 ¹¹	-0.5880 10 ¹⁰	-0.2589 10 ⁹	0.1244 10 ¹⁰	
0.1869 10 ¹¹	0.1560 10 ¹¹	0.9637 10 ¹⁰	0.3585 10 ¹⁰	0.3077 10 ⁹	-0.8601 10 ¹⁰	-0.1060 10 ¹¹	-0.1096 10 ¹¹	-0.8017 10 ¹⁰	-0.3287 10 ¹⁰	
0.5433 10 ⁹	0.2813 10 ¹⁰	0.4824 10 ¹⁰	0.4561 10 ¹⁰	0.2216 10 ¹⁰	0.1551 10 ¹¹	0.1398 10 ¹¹	0.9954 10 ¹⁰	0.4866 10 ¹⁰	0.1180 10 ¹⁰	
-0.1053 10 ¹¹	-0.1016 10 ¹¹	-0.8053 10 ¹⁰	-0.4566 10 ¹⁰	-0.1421 10 ¹⁰	-0.3976 10 ¹⁰	-0.2056 10 ¹⁰	0.4279 10 ⁹	0.1697 10 ¹⁰	0.1162 10 ¹⁰	
0.5391 10 ¹⁰	0.4081 10 ¹⁰	0.1913 10 ¹⁰	0.1417 10 ⁹	-0.3689 10 ⁹	-0.5704 10 ¹⁰	-0.5995 10 ¹⁰	-0.5321 10 ¹⁰	-0.3419 10 ¹⁰	-0.1237 1010	

459 0.1329 -0.05895	57 -0.8206 -0.1547	118 1.360 1.289	72 -0.3208 -2.195	79 -0.9697 1.389	331 0.07848 0.1205	590 0.1145 -0.7028	30 -1.384 1.084	155 2.514 -0.1087	40 -1.623 -0.9506
0.05433 -0.03459	-0.1258 0.2557	-0.2094 -0.5118	0.8116 0.2872	0.7770 0.1579	0.02996 -0.03331	0.3074 0.02590	-0.7480 0.3130	0.6072 -0.7255	0.01034 0.5740
-0.1052	0.6851	-1.200	0.3979	0.7160	. 012700-	-0.04652	1.067	-2,058	1.438
0.003079	-0.3731	1322	-1.597	0.6253	0.1078	0.4413	0.2850	0.7490	-1.198
0.07140	-0.3012	0.2214	0.4566	\$ <i>611</i> ,0-	, 0.0001873	0.2376	-0.8711	1082	10440.
-0.01052	0.08169	-0.1750	0.1200	0.02606	0 -0.01117. D	0.01423	0.08594	-0.2348	0.1933
0.02669	0.03943	-0,4686	0.8417	-0.5518	-0.0446	0.2750	-0.489	0.08331	03411
-0.1111	0.5727	-0.7179	-0.2567	1 030	-0.03256	-0.2368	1,359	-1.873	1.019
0.04867	-0.5585	1,435	-1.266	0,1068	0.1060	-0.2205	-0.2800	1.427	-1.458
0.04178	-0.06227	-0.2864	0.7811	-0.6674	-0.03401	0.2822	-0.6130	0,4118	0.1101
0.01016	-0.06595	0.1087	-0.01928	-0.08537	0.007381	0.005766	-0.1083	0.1987	-0.1272
-0.01061	0.2762	-0.2687	0.9457	-0.2773	81 390 0-	0.2499	-0.06138	-0.6310	0.2269
-0.1066	0.4025	-0.1543	10000	1.248	0.01232	-0.4093	1,333	-1.500	0.4897
0.02265	-0.6869	1.409	8618.0-	-0.4113	0.09443	01/6010-	-0.8051	1.952	-1.569
0.02220	0.1065	-0.6620	1.043	-0.6092	9165010-		-0.4500	-0.05713	0.5198
0.03599	-0.2468	0.4506	-0.1783	-0.2324	0.02930	0.0001696	-03553	0.7237	-0.5196
10/.60'0-	0.8055	-1.729	1.111	0.3813	56TTO-		0.8468	-2253	1289
- 901100	0.2056	0,6081	-1.370	1,661	1227010	-0.6860	1,559	-1.125	2261.0.]

/

FIG. 17 Example ||P|| Matrix

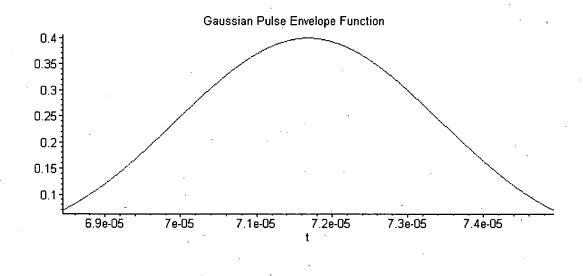


FIG. 18 Example Envelope Function

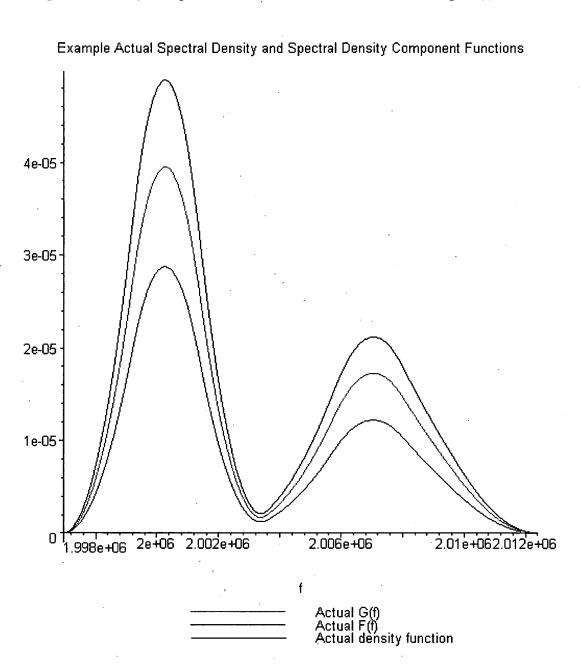
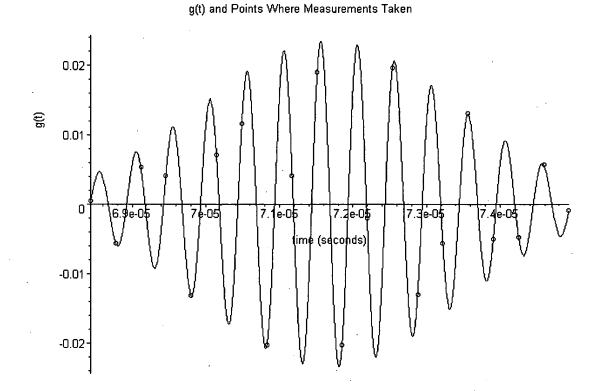
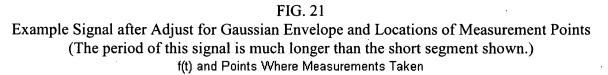
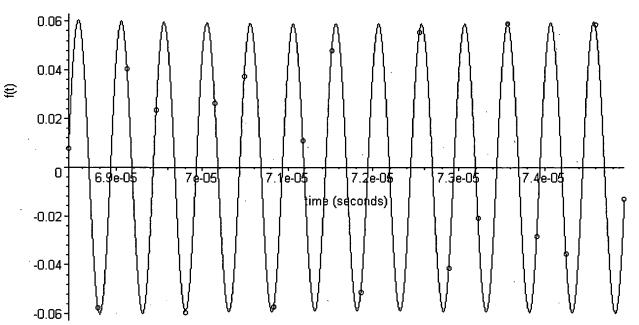
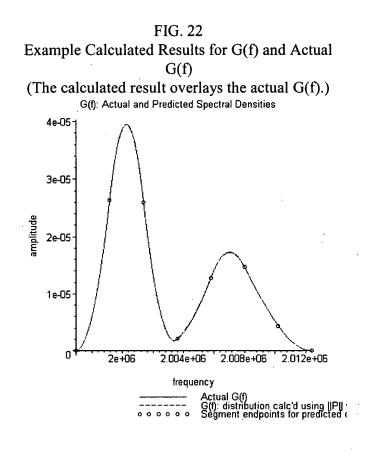
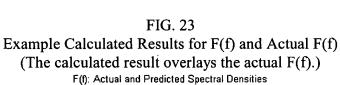


FIG. 19

Spectral Density Component Functions Used to Calculate Example f(t) Values

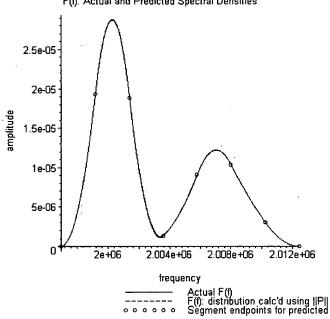

FIG. 20 Example Signal and Locations of Measurement Points

FIG: 24 Equations for Piecewise Continuous Equally Spaced Quadratic Function Segments	
The equation for the first $N-2$ columns of $ A $ is	(51)
$A_{i,j} = \frac{1}{8} E(i) \left((-4 N + 4j + 2) \cos(2 \pi i (H_0 + (N - 1) H_0)) + 2 \cos(2 (H_0 + j H_0) \pi i) + 2 (N - j) \cos(2 \pi i (H_0 + (N - 2) H_0)) - 2 \cos(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - 1) H_0)) + 2 \sin(2 \pi i (H_0 + (j - $	(⁸))
+ 2 (N - 1 - J) cos(2 ($H_0 + NH_b$) π t)) / (π^3 t ³)	
The equation for the last $N-2$ columns of $ A $ is ((52)
$A_{t,j} + N - 2 = \frac{1}{8} \mathbb{E}(t) (2\pi t (H_0 + (j - 1)) + \sin(2\pi t (H_0 + (N - 2))) (-2N + 2j) - 2(N - 1 - j) \sin(2(H_0 + N H_\delta) \pi t) - 2\sin(2(H_0 + j H_\delta) \pi t) + (4N - 4j - 2)\sin(2\pi t (H_0 + (N - 1)) + (N - 1)) + (2\pi t (H_0 + (N - 1)) + (N - 1)) + (2\pi t (H_0 + (N - 1)) + (N - 1)) + (2\pi t (H_0 + (N - 1)) + (N - 1)) + (2\pi t (H_0 + (N - 1)) + (2\pi t (H_0 + (N - 1))) + (2\pi t (H_0 + (N - 2))) + (2\pi t (H_$	(((3)
$\int (\pi t)$ The equations for calculating the <i>Nth</i> and <i>N-1th</i> terms of a and x from the first N-2 terms	
$a_{N-1} = \sum_{p=1}^{N-2} a_p (p-N) (43) \qquad a_N = -\left(\sum_{p=1}^{N-2} a_p (p-N+1)\right) (44)$	
The equation for spectral density component functions	53)
$d(f) = \left(\sum_{j=1}^{N-1} \text{Heaviside}(f - H_0 - (j-1))H_{\delta}) \text{ Heaviside}(H_0 + jH_{\delta} - f) \left(H_{\delta} \left(\sum_{p=1}^{j-1} (-(2p-1))H_{\delta} + 2f - 2H_0)a_p\right) + a_j(f - H_0 - (j-1))H_{\delta}\right)^2$	
+ Heaviside $(f - H_0 - (N - 1) H_{\hat{D}})$ Heaviside $(H_0 - f + N H_{\hat{D}}) \left(\sum_{j=1}^{N-2} (-a_j (H_0 - f + N H_{\hat{D}})^2 (j + 1 - N)) \right)$	
	(50)
$\frac{\left[N-2\right]}{\sigma(t)=F(t)}\left[\frac{N-2}{2}\left[\frac{1}{2}\left(\sin(2\pi t(H_0+(N-2)H_0))(-2N+2j)-2(N-1-j)\sin(2\pi t(H_0+NH_0))-2\sin(2\pi t(H_0+jH_0))+(4N-4j-2)\sin(2\pi t(H_0+(N-1)H_0))+2\sin(2\pi t(H_0+(j-1)H_0)))x_j\right]}{\left[\frac{N-2}{2}\right]}\right]$	
$\int_{y=1}^{\infty/2} \left(\frac{1}{y} \left(\frac{1}{g} \right)^{-1} \left(\frac{1}{g} \left(\frac{1}{2} - \frac{1}{3} \right) \cos(2\pi t (H_0 + (N-2)H_0)) + 2\cos(2\pi t (H_0 + H_0)) + 2(N-1-j) \cos(2\pi t (H_0 + NH_0)) + (-4N+4j+2) \cos(2\pi t (H_0 + (N-1)H_0)) - 2\cos(2\pi t (H_0 + (j-1)H_0)) \frac{1}{g} \right) \right) = \frac{1}{g} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{3} \right) \cos(2\pi t (H_0 + (N-1)H_0)) + 2\cos(2\pi t (H_0 + (N-1)H_0))$	(
++	

.

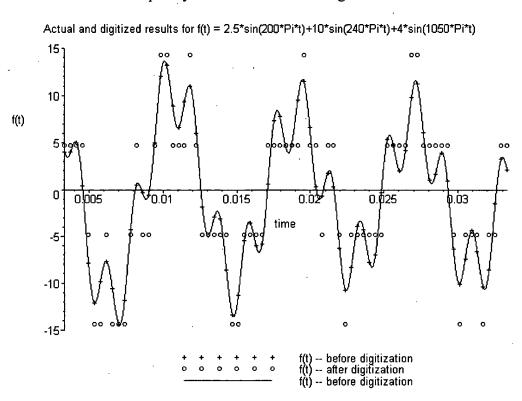
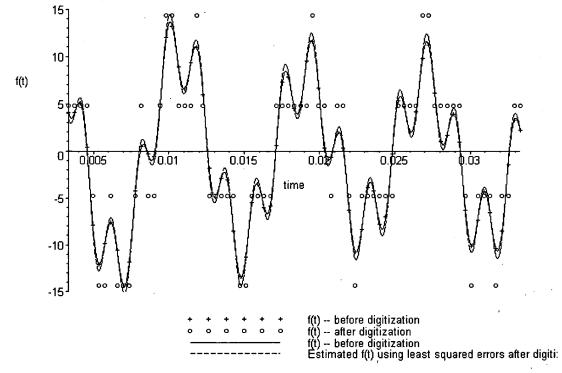
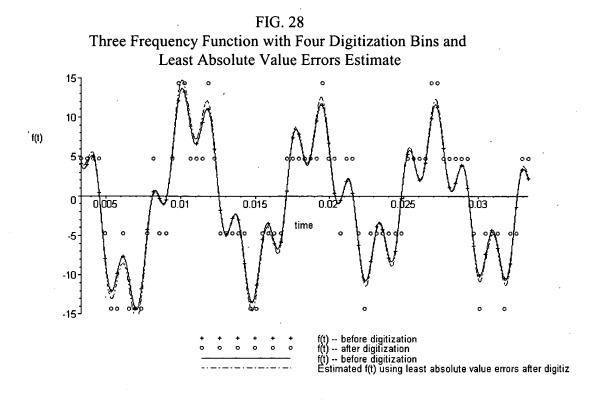
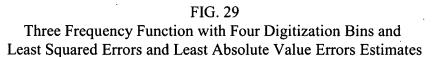
(53) $\left(\sum_{j=1}^{N-1} \text{Heaviside}(f-H_0-(j-1))H_{\delta}) \text{Heaviside}(H_0+jH_{\delta}-f) \left(H_{\delta}\left(\sum_{p=1}^{j-1} (-(2p-1))H_{\delta}+2f-2H_0)a_p\right) + a_j(f-H_0-(j-1))H_{\delta}\right) + a_j(f-H_0-(j-1))H_{\delta}\right)$ + Heaviside $(f - H_0 - (N - 1) H_{\delta})$ Heaviside $(H_0 - f + N H_{\delta}) \left(\sum_{j=1}^{N-2} (-a_j (H_0 - f + N H_{\delta})^2 (j + 1 - M)) \right)$ d(f) =

S

FIG: 25 Equations for Piecewise Continuous Equally Spaced Linear Function Segments The equation for the first <i>N-1</i> columns of [A is $A_{i,j} = \frac{1}{4} \frac{E(t) (\sin(2\pi t_j (H_0 + (N-1) H_0)) - \sin(2(H_0 + NH_0)\pi t_j) - \sin(2\pi t_j (H_0 + (j-1) H_0)) + \sin(2\pi (H_0 + j H_0) t_j))}{\pi^2 t_j 2}$ The equation for the last <i>N-1</i> columns of [A is $A_{i,j} + N - 1 = \frac{1}{4} \frac{E(t) (\cos(2\pi t_j (H_0 + (N-1) H_0)) - \cos(2(H_0 + NH_0)\pi t_j) - \cos(2\pi t_j (H_0 + (j-1) H_0)) + \cos(2\pi (H_0 + j H_0) t_j))}{\pi^2 t_j 2}$ The equation for the last <i>N-1</i> columns of [A is $A_{i,j} + N - 1 = \frac{1}{4} \frac{E(t) (\cos(2\pi t_j (H_0 + (N-1) H_0)) - \cos(2(H_0 + NH_0)\pi t_j) - \cos(2\pi t_j (H_0 + (j-1) H_0)) + \cos(2\pi (H_0 + j H_0) t_j))}{\pi^2 t_j^2}$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating the <i>Nth</i> term of [and x from the first <i>N-1</i> terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating term term that the totom term the totom terms $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating estimated functions of time $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating estimated functions of time $a_{i,j} = - \left(\sum_{p=1}^{-1} a_{j}\right)$ The equation for calculating testimated functions of time a_{i,j
$+\frac{1}{4}\left(\sum_{j=1}^{N} \frac{(\cos(2\pi t(H_0 + (N-1)H_{\delta})) - \cos(2(H_0 + NH_{\delta})\pi t) - \cos(2\pi t(H_0 + (j-1)H_{\delta})) + \cos(2\pi (H_0 + jH_{\delta})t))x_j}{\pi^2 t^2}\right)$

. .

Ś

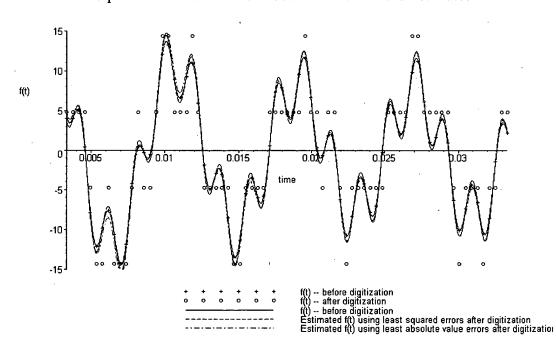

FIG. 26 Three Frequency Function with Four Digitization Bins

FIG. 27 Three Frequency Function with Four Digitization Bins and Least Squared Errors Estimate

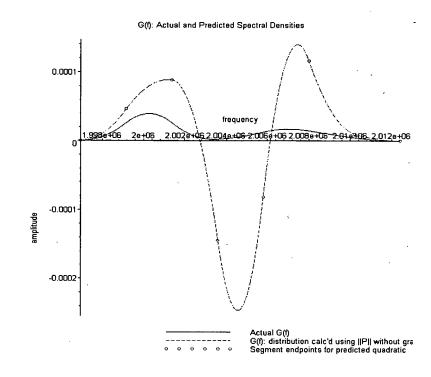
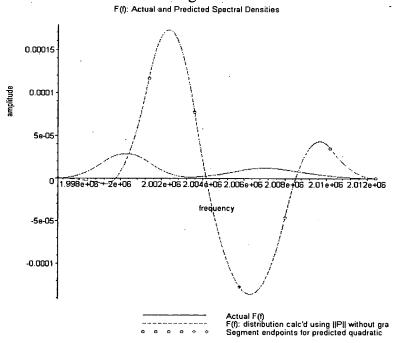



FIG. 30 Actual and Estimated G(f) Calculated without Accounting for Digitization

FIG. 31 Actual and Estimated F(f) Calculated without Accounting for Digitization

.10

Bounded Area Measure when Using Piecewise Continuous Quadratic Function Segments	$MAs_{1N} = \left(\sum_{j=1}^{N-2} \left(\sum_{q=1}^{j-1} \left(\sum_{q=1}^{j-1} (2j-2q-1)a_q\right)^2 + 30 \left(\sum_{q=1}^{j-1} (2j-2q-1)a_q\right) \left(\sum_{q=1}^{j-1} a_q\right) + 10a_j \left(\sum_{q=1}^{j-1} (2j-2q-1)a_q\right) + 20 \left(\sum_{q=1}^{j-1} a_q\right)^2 + 15a_j \left(\sum_{q=1}^{j-1} a_q\right) \right) \right)$	$+68\left(\sum_{q=1}^{N-2}a_q(q-N)\right)^2 +15\left(\sum_{q=1}^{N-2}(3-2N+2q)a_q\right)^2 -30\left(\sum_{q=1}^{N-2}(3-2N+2q)a_q\right)\left(\sum_{q=1}^{N-2}a_q\right) -10\left(\sum_{q=1}^{N-2}a_q(q-N)\right)\left(\sum_{q=1}^{N-2}(3-2N+2q)a_q\right) +40\left(\sum_{q=1}^{N-2}a_q\right)^2 +10\left(\sum_{q=1}^{N-2}a_q(q-N)\right)\left(\sum_{q=1}^{N-2}(3-2N+2q)a_q\right) +10\left(\sum_{q=1}^{N-2}a_q(q-N)\right)\left(\sum_{q=1}^{N-2}a_q(q-N)\right)\left(\sum_{q=1}^{N-2}a_q(q-N)\right)^2 +10\left(\sum_{q=1}^{N-2}a_q(q-N)\right)\left(\sum_{q=1}^{N-2}a_q(q-N)\right$	$+35\left(\sum_{q=1}^{N-2}a_q(q-N)\right)\left(\sum_{q=1}^{N-2}a_q\right)+3\left(\sum_{q=1}^{N-2}a_q(q+1-N)\right)^2+15\left(\sum_{q=1}^{N-2}(1-2N+2q)a_q\right)^2-60\left(\sum_{q=1}^{N-2}(1-2N+2q)a_q\right)\left(\sum_{q=1}^{N-2}a_q(q-N)\right)^2$	$-30\left(\sum_{q=1}^{N-2} (1-2N+2q)a_q\right)\left(\sum_{q=1}^{N-2} a_q\right) + 10\left(\sum_{q=1}^{N-2} a_q(q+1-N)\right)\left(\sum_{q=1}^{N-2} (1-2N+2q)a_q\right) - 25\left(\sum_{q=1}^{N-2} a_q(q+1-N)\right)\left(\sum_{q=1}^{N-2} a_q(q-N)\right)$	$-15\left(\sum_{q=1}^{N-2}a_q(q+1-N)\right)\left(\sum_{q=1}^{N-2}a_q\right)$
--	---	--	--	--	--

FIG. 32

FIG. 33 Arc Length Measures for Spectral Density Component Functions Based on Piecewise Continuous Quadratic Function Segments

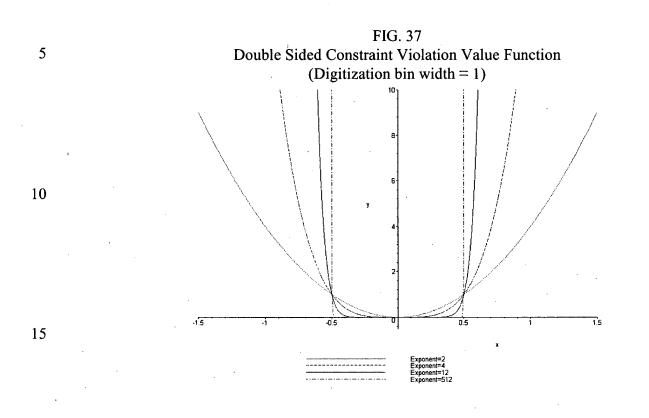
$$\mathcal{M}_{arc_length, \, \mathrm{G}(f)} = 5 \left(\sum_{j=1}^{N-2} a_j \right) \left(\sum_{j=1}^{N-2} a_j \left(-N+j \right) \right) + 2 \left(\sum_{j=1}^{N-2} a_j \left(-N+j \right) \right)^2 + 4 \left(\sum_{j=1}^{N-2} a_j \right)^2 + \left(\sum_{j=1}^{N-2} a_j \right) \left(\sum_{j=1}^{j-1} a_{qj} \right) + \left(\sum_{j=1}^{j-1} a_{jj} \right)^2 + \left(\sum_{j=1}^{N-2} a_{jj} \right)^2$$

FIG. 34 Bounded Area Measures for Spectral Density Component Functions Based on Piecewise Continuous Quadratic Function Segments	$\begin{split} M_{bconoded_area.} G(f) &= \left[\sum_{j=1}^{N-2} \left[3a_j 2 + 15 \left(\sum_{j=1}^{j-1} (2j - 2q - 1)a_q \right)^2 + 30 \left(\sum_{q=1}^{j-1} (2j - 2q - 1)a_q \right) \left(\sum_{q=1}^{j-1} a_q \right) + 10a_j \left(\sum_{q=1}^{j-1} (2j - 2q - 1)a_q \right) + 20 \left(\sum_{q=1}^{j-1} a_q \right)^2 + 15a_j \left(\sum_{q=1}^{j-1} a_q \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left(\sum_{q=1}^{j-2} a_q \left(q - N \right) \right) + 15a_j \left($	$M_{bounded_drawa.} F(f) = \begin{bmatrix} N^{-2} \\ -1 \end{bmatrix} \left(\frac{N^{-2}}{2} \left(3x_j^2 + 15 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{-1} + 30 \begin{pmatrix} j-1 \\ q = 1 \end{pmatrix} \right) \left(x_j^{$
	$M bounded_area, G$ $+ 68 \left(\sum_{q=1}^{N-2} a_q \right)$ $+ 85 \left(\sum_{q=1}^{N-2} a_q \right)$ $- 30 \left(\sum_{q=1}^{N-2} a_q \right)$ $- 15 \left(\sum_{q=1}^{N-2} a_q \right)$	$M bounded_area, Fi$ $+ 68 \left(\sum_{q=1}^{N-2} x_q \right)$ $+ 85 \left(\sum_{q=1}^{N-2} x_q \right)$ $- 30 \left(\sum_{q=1}^{N-2} x_q \right)$ $- 15 \left(\sum_{q=1}^{N-2} x_q \right)$

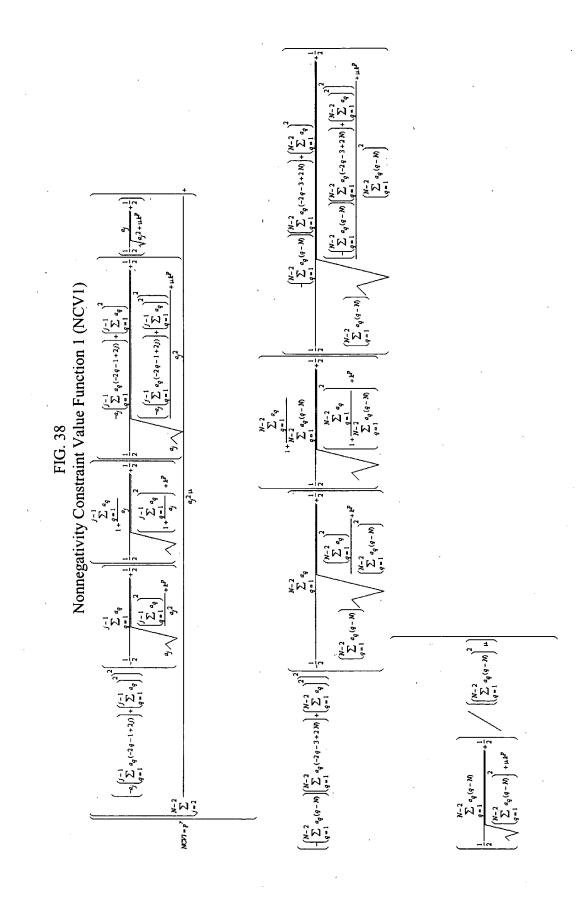
. .

Quadratic Curvature Measures for Spectral Density Component Functions Based on Piecewise Continuous Quadratic Function Segments FIG. 35

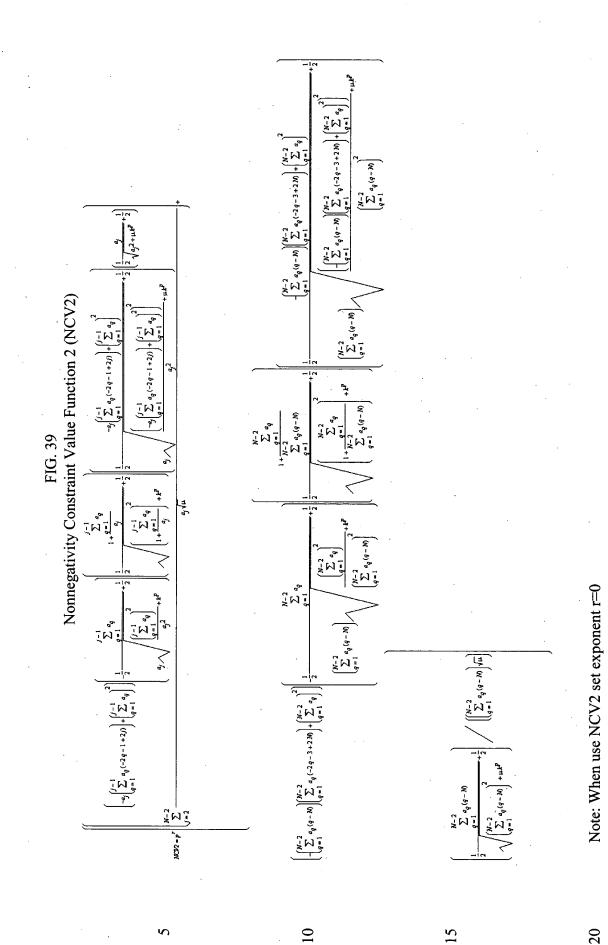
 $M_{curvature, G(f)} = \left(\sum_{j=1}^{N-2} a_j^2\right) + \left(\sum_{p=1}^{N-2} a_p \left(p-N\right)\right)^2 + \left(\sum_{p=1}^{N-2} a_p \left(p+1-N\right)\right)^2$

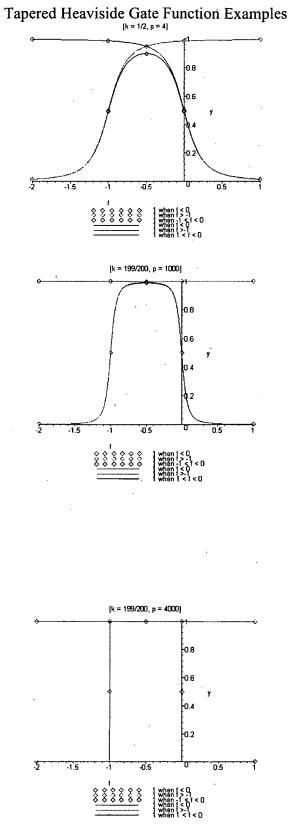

 $M_{curvature, F(f)} = \left(\sum_{j=1}^{N-2} x_j^2\right) + \left(\sum_{p=1}^{N-2} x_p \left(p-N\right)\right)^2 + \left(\sum_{p=1}^{N-2} x_p \left(p+1-N\right)\right)^2$

Ś


FIG. 36 Objective Function Combining Measure of Arc Length and Measure of Area for both G(f) and F(f)

Ś


$$\begin{aligned} \partial \mu &= i \left[\sum_{i=1}^{N-2} (P_{i-1}^{-2} - P_{i-2i})_{i} \right]^{2} \\ + \left[$$


. . .

Note: Select value of r so that $p^{r\!=\!N^2}$

S

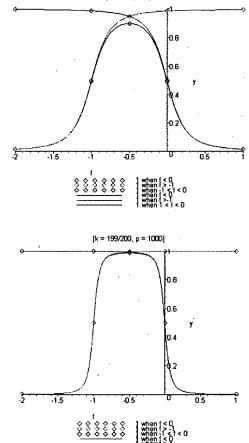


FIG. 40

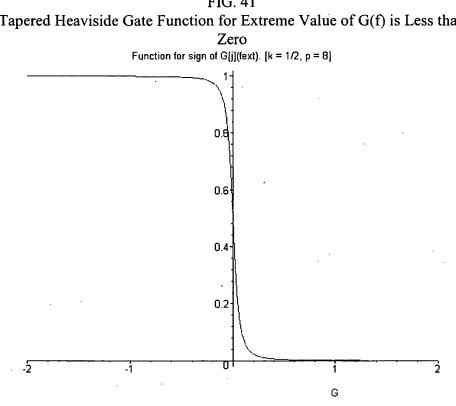
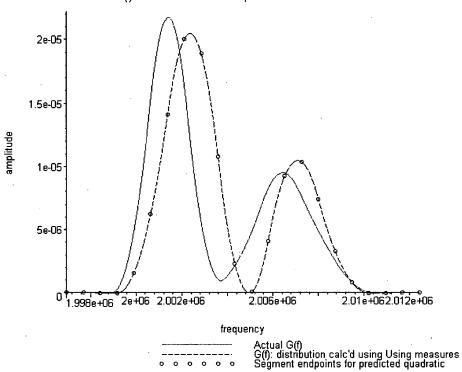



FIG. 41 Tapered Heaviside Gate Function for Extreme Value of G(f) is Less than

FIG. 42 Example G(f) Calculated Using NCV1 Nonnegativity Constraint Value Function G(f): Actual and Predicted Spectral Densities

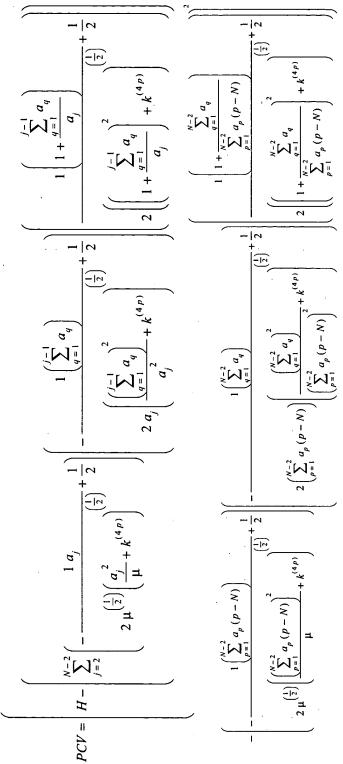


FIG. 43 Peak Count Constraint Value (PCV) Function

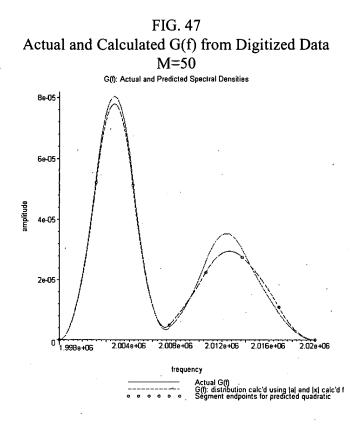
S

FIG. 44 Basic Calculation Sequence Page 1 of 3

1. Spe	cify solution parameters	D. Select type of nonnegativity
Α.	Specify measurements	constraint (refer to FIG. 38 and
	a. Number of measurements	FIG. 39)
	(M)	a. Scaled by $G_j(f_{j,ext})^2$
	b. Time interval between	b. Scaled by $-G_j(f_{j,ext})$ Select
	measurements	peak count constraint (refe
 B.	Specify basis frequencies	to FIG. 43)
	a. Lower and upper frequency	a. Select whether will use
	limits (f_L, f_H)	peak count constraints
	b. Number of frequency	b. Select number of peaks fo
	intervals (N)	G(f), F(f)
C.	Select Objective Function	F. Specify properties of
	components (refer to FIGS. 33,	digitization bin constraints
	34, 35)	a. Sharpness of constraint
	a. Arc length measure for	penalty (final value of
	G(f), F(f)	parameter w)
	b. Bounded area measure for	b. Value of penalty during
	G(f), F(f)	final calculations (final
	c. Quadratic curvature for	value of parameter p)
	G(f), F(f)	G. Specify rate of change of
		nonnegativity constraints
		(parameter k)
		proceed to precalculations

10

,


5

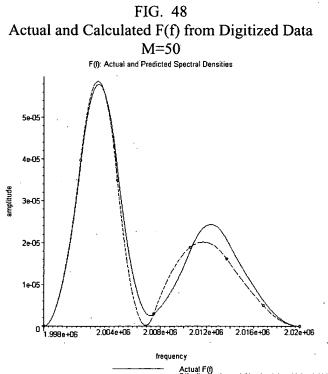
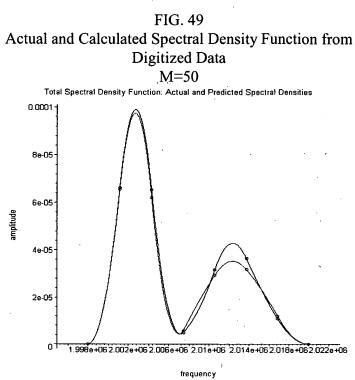
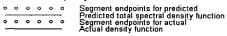
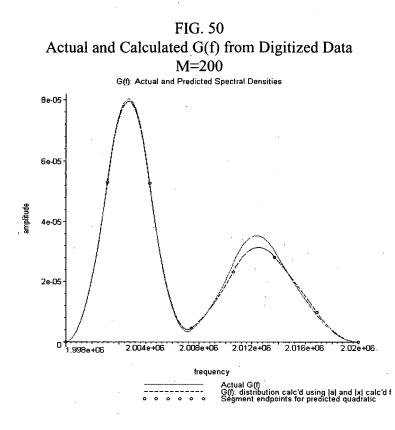
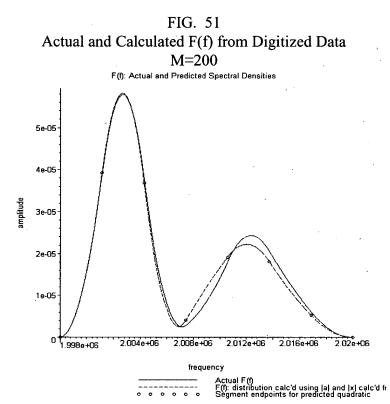

15

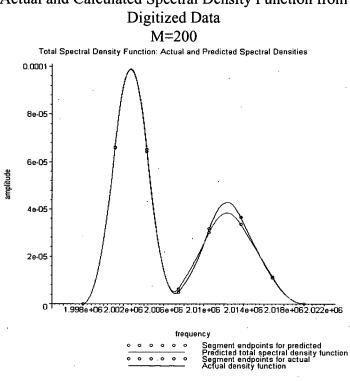
FIG. 45 Basic Calculation Sequence Page 2 of 3

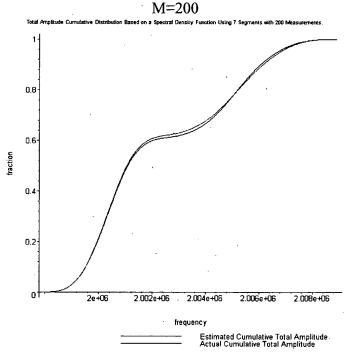

2.	Precalculations (before search for	C. Calculate OF using starting d
	solution)	and calculate starting OF scal
	A. Calculate matrix A (Refer to	factor λ (λ =10 ⁽ order of
·	FIG. 25)	magnitude of OF minus 2)
· ·	B. Calculate objective function	D. Select starting value of
	(OF) expression and its	parameter p, e.g., p=2.
•	Hessian (this will be a matrix	E. Calculate starting values for
•	of numbers)	constraint value functions:
	C. Calculate nonnegativity	digitization bin constraint
	constraint value (NCV)	violation value function
	function and its gradient and	(CVV), nonnegativity
	Hessian (these will be a vector	constraint value function
·	and a matrix of expressions in	(NCV), peak count constraint
• .	terms of a and x).	value function (PCV)
	D. Calculate peak count constraint	F. Calculate value for constraine
	value (PCV) function and its	objective function (COF):
	gradient and Hessian (these	$COF = OF/\lambda + CVV + NCV +$
	will be a vector and a matrix of	PCV
	expressions in terms of a and	
	x).	proceed to multidimensional
3.	Initialize	Newton method search.
•	A. Select starting $ a $ and $ x - e.g.$,	
	constant vectors with small	
	values	
	B. Create starting d by stacking	
	a over x	


4. Multidimensional Newton Method	(4) If $COF_{k+1} < COF_k$ then goto
Search (designate starting value of	step c, otherwise got to
variables with subscript k, e.g.,	step b.(2) and reduce s ,
starting $ \mathbf{d} $ as $ \mathbf{d}_k $.)	unless s has been reduced
A. Using current value of p	to a very small value, in
a. (This sequence calculates	which case goto to step d.
new d)	c. (Get here when have lower
Using d _k	COF) If significant change in
(1) Calculate gradient for	$ \mathbf{d}_{k+1} $ from $ \mathbf{d}_k $ then
OF	(1) set $ d_k = d_{k+1} $
(2) Calculate gradient and	(2) go back to step 4.A.a
Hessian for CVV.	otherwise go to step d.
(3) Calculate gradient and	d. (Get here when stopped getting
Hessian for NCV.	changes in $ \mathbf{d}_{k+1} $)
(4) Calculate gradient and	If at final value of parameter
Hessian for PCV.	then go to step B, otherwise
(5) Sum gradients and sum	(1) Increase p, e.g.,
Hessians and use these	multiply current value
to calculate the change	of p by 3/2
in d : s .	(2) Calculate OF using d _k
(6) Calculate $ d_{k+1} = d_k + s $	and the new p
(7) Calculate new OF,	(3) Calculate new value
CVV, NCV, PCV and	for scale factor λ .
, COF _{k+1} .	(4) Go back to step 4.A.
b. (Backstep, if necessary)	B. (Get here when have finished
(1) If $COF_{k+1} < COF_k$ then	calculations with final value of p).
goto step c.	
(2) Reduce s by order of	** Search complete **
magnitude	· · · ·






---- F(f): distribution calc'd using [a] and [x] calc'd fr



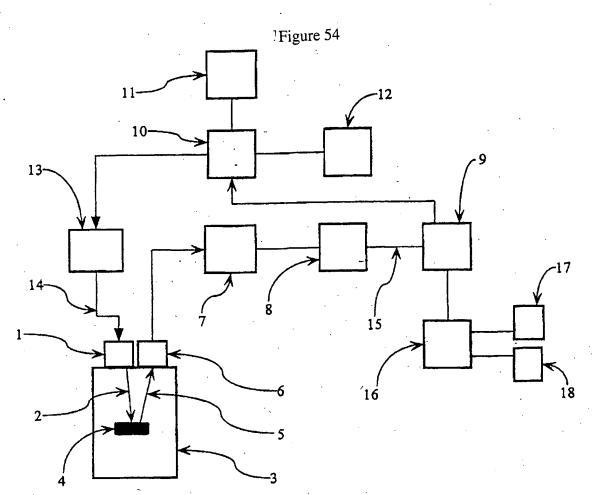

FIG.52 Actual and Calculated Spectral Density Function from

FIG. 53 Actual and Calculated Cumulative Spectral Density Function from Digitized Data

10

5

j.